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Graphs 2

Mathematics Worksheet

This is one of a series of worksheets designed to help you increase your confidence in handling Mathematics.  This worksheet contains both theory and exercises which cover:-

	1.  Revision of straight line graphs and quadratics

	2.  Cubic
	3.  Quartic

	4.  Higher Powers
	5.  Fractional Functions

	6.  Modulus Functions
	


There are often different ways of doing things in Mathematics and the methods suggested in the worksheets may not be the ones you were taught.  If you are successful and happy with the methods you use it may not be necessary for you to change them.  If you have problems or need help in any part of the work then there are a number of ways you can get help.

For students at the University of Hull

· Ask your lecturers.

· You can contact a Mathematics Tutor from the Skills Team on the email shown below.

· Access more Maths Skills Guides and resources at the website below.

· Look at one of the many textbooks in the library.

1. Revision of straight line graphs and quadratics
The graph of any equation of the form 
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 (or that of any equation that can be rearranged into this form) will be a straight line.  

It can be shown that 
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 is the gradient (slope of the graph) and 
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 the intercept on the 
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-axis, called the gradient-intercept equation of the line.  
Given a linear equation it is easy to find two points on the line (which defines the line) and then check by finding a 3rd point.  
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Hence the sketch.

Note: 
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gradient 3, intercept 
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Exercise 1

In each of these questions sketch the graphs (a), (b),… on the same set of axes.

1. (a) 
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Quadratics
The general quadratic is given by 
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, where 
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 is called the discriminant because it discriminates between possible numbers of roots (i.e. where the graph cuts or touches the 
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-axis).

1. if 
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  there are no real roots. This means that the graph does not touch the 
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-axis at all, e.g. 
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2. if 
[image: image59.wmf]2

40

bac

-=

 there are 2 equal real roots. This means that the graph touches the 
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-axis but does not cross it, e.g. at 
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3. if 
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 there are 2 real roots. This means that the graph crosses the 
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-axis twice, e.g.  at 
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Note that the graphs in all 3 examples above of 
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 the graphs will be
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-shaped as in example (c) below. 

To sketch a quadratic graph, you either need to know where the curve cuts the 
[image: image72.wmf]x

-axis by factorising the function or write it in ‘completed square form’ (help for both of these techniques can be found in the booklet ‘Algebra 2’ available on our website: http://libguides.hull.ac.uk/skills)
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 EMBED Equation.3  [image: image76.wmf]4
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 does not factorise so we complete the square.   
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Also when 
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Completing the square gives
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	Graph is 
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Where possible, factorising is the easier option.  Alternatively, you can also find the co-ordinates of the points where the curve cuts the 
[image: image90.wmf]x

-axis (if it does) by using the formula. 

Exercise 2

Sketch the graphs of 
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For extra practice with straight line and quadratic graphs please refer to the booklet Graphs 1, available on our website: http://libguides.hull.ac.uk/skills.
2. The Cubic
[image: image317.png]



Cubics are equations where the highest power is 3.

For a cubic graph there are many possibilities, 5 are shown above, from left to right they are:
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 (1 double & 1 single point; a double point implies the curve touches the x-axis)
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(1 triple point; a triple point implies a point of inflexion)
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There are other possibilities for positive 
[image: image109.wmf]3

x

 graphs and there are the negative cubic curves as well – reflections of those above!

There is no easy way of distinguishing which situation you have.  If the equation factorises then it is easy to find the points where the curve crosses the 
[image: image110.wmf]x

-axis.  If it doesn’t then you may have to use approximate methods to find where the curve crosses the 
[image: image111.wmf]x

-axis.

It is not easy to sketch a cubic unless you can factorise the equation.   There is no simple equivalent to completing the square as with the quadratic.  It is possible to find some information and make a sketch by finding the turning points using calculus.  It is also possible to find approximately where the curve crosses the 
[image: image112.wmf]x

-axis by using numerical methods.

3.  The Quartic

Quartics are equations where the highest power is 4. 

As is becoming fairly obvious, the higher the power, the more possibilities there are.  For a quartic you can have any number of values from 0 to 4!  One version of the quartic graph is shown below.  The lines shown cut the curve in points with real 
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-values and non-real 
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-values:-
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The above sketch is a positive 
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 curve. Similar possibilities exist for negative 
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 curves. There are a number of other possible quartics, some of which are shown here. As with cubics, sketching is not easy unless you can factorise the equation.
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-axis meets 

curve h in 4 points (all the same);

curve i in 2 real, not equal points;

curve j in 4 points 

(3 are the same);


	


4. Higher powers 

These will give even more possibilities.  In practice you need to be able to factorise the equation or find turning points to make a reasonable sketch.

There are some other clues you can find.  When 
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 gets very large (positive or negative) the highest power of 
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 dominates all the others.   For instance, in the expression 
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 gets very large, say, 
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.  For large (positive or negative) values of 
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, the term with the highest power is the most important. 

Also when 
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 is very small (positive or negative) we can see that the lowest power of 
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 is most important.  For instance when 
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 so the graph of the above function will be like 
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 We have 3 pieces of information:

1. When 
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 is large and positive then 
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 is even larger and positive.

2. When 
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 is large and negative then 
[image: image138.wmf]y

 is even larger and negative.

3. When 
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 is small the curve behaves like 
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Putting these 3 clues on a diagram gives some idea of what the graph looks like but not enough to sketch it more fully.
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If you are asked to sketch the curves 
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all you can say is that, in both cases  as 
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 behaves like 
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 is close to 0, the curve approximates to 
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 hence lines and arrows in the sketch.
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The graphs of 
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are:
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Approximate values are given where the curves cross the 
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-axis. 
To sketch the shape below the 
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-axis is impossible without further information!  Hence it is very difficult to sketch the curve accurately unless you can simplify or factorise the function. 
Finding turning points is not easy here.  In the first case turning points occur where the gradient function is 
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5. Sketching Fractional Functions

Without using Calculus, there are a number of clues that can be used when sketching curves, some of which have been mentioned above.  They are

1. Are there any values of 
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 that cannot be used?

2. What happens when 
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 and 
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3. What is the value of 
[image: image158.wmf]y

 when 
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4. Is there any value of 
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 that makes 
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?

5. When is the function positive & when is it negative?

Dealing with large values of 
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 is very important when sketching fractional functions.  We have seen that the highest powers are the most significant terms so 
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 Example (a) Sketch the curve given by 
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. (See  the booklet ‘Inequalities and Modulus’, available on our website: http://libguides.hull.ac.uk/skills for more information.)
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from 4 the curve doesn’t cross the asymptote 
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Example (b) Sketch the function 
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	note also, from the sketch, 

that  
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	 Putting all the clues onto a set of axes gives: 

(note this not the same scale as the previous diagram.)
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Putting these on a set of axes gives: 
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Example (d) Sketch  
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	Putting the information on a set of axes (note this is not the same scale as the previous sketch) gives:-


	

	The graph of 
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(Note from 4 above the curve touches the 
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Exercise 3 Sketch the graphs of the following functions
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6. Modulus Functions 
(For help on modulus see the booklet ‘Inequalities and Modulus’, available on our website http://libguides.hull.ac.uk/skills)
Example  Sketch the graph of 
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	hence the graph of
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(note the sections below the 
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Exercise 4 Sketch the following
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